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Mycobacterium bovis bacille Calmette-Guérin (BCG) is the only available vaccine for tuberculosis (TB). Although this vaccine is
effective in controlling infantile TB, BCG-induced protective effects against pulmonary diseases in adults have not been clearly
demonstrated. Recombinant BCG (rBCG) technology has been extensively applied to obtain more potent immunogenicity of this
vaccine, and several candidate TB vaccines have currently reached human clinical trials. On the other hand, recent progress in the
improvement of the BCG vector, such as the codon optimization strategy and combination with viral vector boost, allows us to
utilize this bacterium in HIV vaccine development. In this paper, we review recent progress in rBCG-based vaccine studies that
may have implications in the development of novel vaccines for controlling global infectious diseases in the near future.

1. Introduction

Mycobacterium bovis bacille Calmette-Guérin (BCG) is the
only licensed vaccine that has substantially helped control-
ling tuberculosis (TB) for more than 80 years. This vaccine
affords ∼80% protection against TB meningitis and miliary
TB in infants and young children [1]. However, the BCG-
induced protective effects against pulmonary diseases over
all ages are variable; the escalation of the worldwide TB
epidemic is evidence that the vaccine does not work well
to prevent pulmonary TB [2]. Recently, studies on the
advanced molecular biology and genomics of mycobacteria
have revealed that the BCG genome has various mutations
and deletions compared with the original virulent strain of
Mycobacterium tuberculosis and M. bovis [3]. Interestingly,
there are substantial differences in the genomic DNA even
among BCG substrains [4, 5] that can cause biological
differences in the population of BCG vaccines.

Since a host-vector system in mycobacteria was devel-
oped in 1987 [6], recombinant BCG (rBCG) technology has
been extensively applied in the development of vaccines
against a variety of infectious diseases, including bacterial,

viral, and parasitic infections in addition to TB [7, 8]. BCG
is attractive as a vaccine vector because of its extensive
safety record in humans, heat stability, low production cost,
induction of long-lasting type 1 helper T cell (Th1) immu-
nity, CD8+ T-cell triggering, adjuvant activity, usability in
newborns and its mucosal immune induction by oral admin-
istration. Taking the current situation of serious epidemics
of emerging and reemerging diseases mainly in developing
African and Asian countries into account, a new global
vaccine should be affordable in such areas. Therefore, the
low price and heat stability of BCG-based vaccines would be
desirable. In this paper, we review various efforts to develop
novel BCG vector-based vaccines mainly for controlling TB
and HIV/AIDS.

2. Immunological Properties of BCG Vector

The immune responses induced by BCG are outlined in
Figure 1. The most characteristic response to BCG is the
induction of innate (nonspecific) immunity by cell wall
components through toll-like receptors (TLRs) 2 and 4 on
dendritic cells and macrophages [9]. After phagocytosis,
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Figure 1: Outline of immune responses by BCG. Both innate
immunity via TLRs and antigen-specific immunity via MHC- or
CD1-restricted antigen presentation to T cells are induced by
various BCG cell components.

BCG is degraded by lysosomal enzymes, and the processed
antigen can be presented to the host immune system via
various pathways. DNA fragments containing the CpG motif
may activate innate immunity via the TLR9 route [10].
Lipids such as mycolic acid presented by CD1 stimulate CD1-
restricted CD8+ T cells [11]. Protein antigens, such as antigen
85 complex produced by BCG, induce Th1 response through
presentation by major histocompatibility complex (MHC)
class II. This pathway is the major route of BCG-induced
responses and is indispensable for protective immunity
against M. tuberculosis infection via protective cytokine
interferon (IFN)-γ production. On the other hand, the
processing and presentation of protein antigens via the MHC
class I pathway are also elicited in the BCG-infected antigen
presenting cell (APC). As reported by Goonetilleke et al.
[12], immunizing BCG-sensitized animals with recombinant
vaccinia virus MVA expressing antigen 85A greatly enhances
the MHC class I-restricted CTL response against antigen
85A, indicating that BCG priming could be a novel type of
prime-boost vaccine. This immunological feature of BCG
vector allows its application in vaccines against chronic
viral infectious diseases such as HIV/AIDS. In addition, the
strong Th1 induction by BCG would be favorable to aid the
maturation and maintenance of CTL [13]. Thus, the BCG
vector is expected to induce effective cell-mediated immunity
against a targeted antigen.

3. TB Vaccine

3.1. Background of the Global TB Epidemic. TB kills 1.7
million people worldwide each year; someone dies from TB

every 19 seconds [14]. Although the TB treatment protocol
was established a long time ago, the recent increase of
multidrug-resistant M. tuberculosis infection has generated
a serious situation. New vaccines are urgently needed to
eliminate TB as a public health threat and should be a major
global public health priority. TB is a disease that is spread
from person to person through the air. Furthermore, the
terrible synergy between TB and HIV makes this disease
even more dangerous, especially in sub-Saharan African
countries. For instance, according to the World Health Orga-
nization’s (WHO) Global TB report 2010 [14], South Africa
had nearly 400,000 new TB cases in 2009 with an incidence
rate of an estimated 806 cases per 100,000; TB is one of
the leading causes of death in both adults and children of
this country. The case fatality rate has increased from 3%
in 1993 to 24.3% in 2007. A major reason for the increased
fatality rate is South Africa’s concurrent HIV epidemic. The
prevalence of HIV infection in South Africa in 2009 was
approximately 7%, which has been decreasing as a result
of various efforts toward prevention. TB is a common
opportunistic infection among people living with HIV, and
60% of new TB cases occurred in persons who were also
infected with HIV in 2009 [14]. We can observe similar
critical situations in the countries surrounding South Africa.
Regarding the vaccination, such situation has raised concerns
about the safety of using BCG vaccine in HIV-infected
infants because between 10 and 30% of pregnant women are
HIV infected in many sub-Saharan African countries.

3.2. Current Efforts toward New TB Vaccine Development.
The global plan to stop TB 2011–2015 report [15] offers
7 objectives as follows: (i) to maintain a robust TB vac-
cine pipeline by supporting research and discovery, (ii) to
conduct research to identify correlates of protection and
preclinical studies to assess new TB vaccine candidates, (iii)
to ensure the availability of vaccine production capacity by
expanding manufacturing facilities for TB vaccines, (iv) to
build capacity for large-scale clinical trials (phases II and
III) of TB vaccine candidates at field sites in TB-endemic
countries, (v) to conduct phase I, II, and III clinical trials of
TB vaccine candidates, (vi) to develop delivery, regulatory,
and access strategies for new TB vaccines, (vii) to build
support for TB vaccine development and uptake through
advocacy, communications, and resource mobilization. All
these objectives are important to realize new TB vaccine
development.

The main goal of vaccine development in the Global
Plan to Stop TB 2006–2015 is for 2 vaccines to be in proof-
of-concept trials by 2010 and that 1 new and safe vaccine
is available by 2015. As of 2009, 12 TB vaccine candidates
had entered clinical trials. Of these, 9 are still being tested
(Table 1) : 5 are in phase I clinical trials, 2 are in phase II
trials, and 2 are in phase IIb proof-of-concept trials [15]. One
vaccine has produced estimates of safety and effectiveness in
a targeted HIV-infected population. At least 6 TB vaccine
candidates are in preclinical development, and at least 21
additional next-generation candidates are in the vaccine
discovery phase [15]. As mentioned earlier, the current BCG
vaccine has limited and variable effectiveness against TB.
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Table 1: Summary of candidate TB vaccines in clinical trials 2009. Nine candidate preventive TB vaccines are currently in clinical phases.

Status Products Product description Sponsor

Phase IIb MVA85A/AERAS-485 Vaccinia virus MVA OETC/AERAS

Phase IIb AERAS-402/Crucell Ad35 rBCG/adenovirus 35 Crucell/AERAS

Phase II Hybrid-I + IC31 Ag85B/ESAT6 + adjuvant SSI/TBVI

Phase II M72 Fusion protein + adjuvant GSK/AERAS

Phase I AdAg85A adenovirus 5/Ag85A McMaster Univ.

Phase I VPM 1002 rBCG/listeriolysin::ΔureC Max Planck/TBVI

Phase I Hyvac 4/AERAS-404 Fusion protein + adjuvant SSI/Sanofi/AERAS

Phase I RUTI Fragmented Mtb cell Archivel Farma

Phase I Hybrid-I + CAF01 Ag85B/ESAT6 + adjuvant SSI

Abbreviations in the sponsors: AERAS, AERAS Global TB Vaccine Foundation; GSK, GlaxoSmithKline; OETC, The Oxford-Emergent Tuberculosis
Consortium Ltd.; SSI, Staten Serum Institute; TBVI, Tuberculosis Vaccine Initiative.

Therefore, the first choice of strategy may be improving BCG
by using recombinant DNA technology even though it may
imply safety issue of vaccination in HIV-infected individuals.
Overproduction against a protective antigen of TB in BCG
(rBCG30) exhibited enhanced immunogenicity in humans
[16]. Moreover, the expression of the listeriolysin gene in
BCG (rBCG/hly+::ΔureC) is proven to be more potent in
the induction of TB-specific cellular immune responses [17].
Another strategy for improving BCG vaccines is boosting
BCG immunity with protein [18, 19] or viral vector vaccine
such as modified vaccinia virus Ankara (MVA) strain [20]
and adenovirus type 35 [21]. BCG-prime and recombinant
MVA-antigen 85A boost regimen [22] exhibited efficient
immune responses in humans and have entered the first
phase IIb trial in newborns. Furthermore, a combination of
such strategies in which 3 major antigens are overproduced
and the perfringolysin gene is incorporated into BCG and
boosted with a recombinant adenovirus vaccine has been
developed [23]. However, it is unknown whether such
strategies are relevant for developing vaccines that are
effective against adult pulmonary TB. It is necessary to test
whether these candidate vaccines effectively induce mucosal
immunity and protect against lung disease.

4. HIV/AIDS Vaccine

4.1. Background of the Global HIV Epidemic. In 2009, there
were an estimated 2.6 million people who became newly
infected with HIV. This is more than 21% less than the
estimated 3.2 million who became infected in 1997, the year
in which annual new infections peaked. In 33 countries, the
incidence of HIV has decreased by more than 25% between
2001 and 2009; 22 of these countries are in sub-Saharan
Africa. This trend reflects a combination of factors including
the impact of HIV prevention efforts and the natural course
of HIV epidemics [24].

Although highly activated antiretroviral therapy appar-
ently contributes to control HIV replication in infected indi-
viduals [25], several problems remain to be resolved. These
problems include: (i) the following viral load recovers soon
after the interruption of treatment; (ii) chronic toxicities
cause abnormalities in lipid metabolism and mitochondria;

(iii) drug-resistant viruses increase during long period
of treatment; (iv) long-term treatment carries a risk of
carcinogenesis [26]; (v) expensive drugs are still difficult to
access in developing countries. Even in developed countries,
the high cost of antiretroviral drugs produces a sense of
impending crisis in public health policy [27]. In such
circumstances, although the rate of new infections with HIV-
1 is gradually decreasing, an effective preventive vaccine is
still urgently needed to stem further spread of the virus [28].
Even though considerable recent progress has been made in
the development of an HIV vaccine [29, 30], the immune
correlate of viral protection is not fully elucidated due to the
complicated interaction of viral, immunological, and genetic
factors [31, 32]. Since it is known that some populations
of HIV-1-infected people do not present disease progression
when HIV-1 replication is regulated by host immunity [33,
34], targeted vaccine immunogens are designed to closely
mimic the long-lasting protective immunity induced in the
long-term human survivors of natural infection [35, 36].
Due to safety issues, a live-attenuated HIV vaccine is not
practical. This inevitably led the trend of HIV vaccine
development to component- and vector-based vaccines.

4.2. Current Trends in HIV/AIDS Vaccine Research. The first
large-scale efficacy trial of an HIV/AIDS vaccine was con-
ducted by a US company, Vaxgen Co., in which a genetically
engineered surface envelope (Env) glycoprotein, gp120, vac-
cine was tested in humans. Although the vaccine was targeted
toward inducing effective virus-neutralizing antibodies, the
phase III efficacy trial revealed its ineffectiveness [37, 38].
The failure of the gp120 vaccine changed the trend of HIV/
AIDS vaccine research from an antibody-targeted strategy to
a cell-mediated immunity-targeted strategy. Because HIV-
1 causes chronic infection due to its cell-associated fea-
tures, cellular immunity especially virus-specific cytotoxic
T lymphocyte (CTL) should be a more important arm
of the host immune system. Indeed, immune deficiency
virus-specific cell-mediated immunity has been suggested to
effectively control viral replication during the natural course
of viral infections [39–41]. Based on these findings, various
vaccine modalities, including live viral vectors and DNA
vaccines, have been used to elicit strong CTL and Th1 type
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responses in nonhuman primate models. Although single-
vaccine delivery systems sometimes exhibit insufficient
immune responses, boosting with viral vector vaccines such
as vaccinia virus [40, 41], adenovirus [42, 43], and Sendai
virus [44] in DNA-primed individuals strongly amplified
CTL responses and resulted in the effective control of simian
immunodeficiency virus (SIV) replication. Among such viral
vectors, adenovirus type 5 (Ad5) had the strongest CTL
enhancement effect, and the DNA-prime and recombinant
Ad5 boost vaccine strategy is recognized as the most pro-
mising. However, in 2007, Merck Co. reported that a re-
combinant Ad5 vaccine expressing HIV-1 Gag, Pol, and Nef
antigens did not demonstrate any protective efficacy in a
phase IIB clinical trial [45]. Surprisingly, the vaccinated
group exhibited a significantly higher HIV-1 infection rate
than the placebo group [45], suggesting that the recombinant
Ad5 immunization may have some unknown effect in en-
hancing HIV-1 infection. Thus, we were aware that T-cell
vaccine approaches may involve certain risks and limitations;
this paradigm appears to have reached an impasse.

In September 2009, there was ground-breaking news that
the RV144 large-scale efficacy trial in Thailand demonstrated
a partial effect of reducing HIV-1 infection rate in the
recipients of ALVAC (canarypox)/gp120 prime-boost vaccine
[46]. Although the results demonstrated limited effects, they
demonstrated the possibility of preventing HIV infection
with the active immunization for the first time. Further-
more, although there was no apparent correlation between
protection and virus-specific cellular immune response or
neutralizing antibody levels in the vaccinees, more detailed
analyses of the total host responses are expected in the future.
Taking the vaccine formulation with the gp120 protein boost
into account, some antibody-mediated reactions may be in-
volved in this partial protection. On the other hand, a new T-
cell-targeted vaccine also demonstrated protective efficacy in
a macaque study in the same year. A rhesus cytomegalovirus-
vectored vaccine expressing SIV Gag, Rev-Tat-Nef, and
Env persistently infected rhesus macaques, primed, and
maintained robust SIV-specific CD4+ and CD8+ effector
memory T-cell responses in the absence of neutralizing
antibodies [47]. The report suggests that T cell vaccines may
have greater potential than previously estimated. Although
the importance of broadly neutralizing antibody production
would not change despite tremendous difficulties, cellular
immunity-targeted candidate vaccines should be also clini-
cally tested for proofs of concept.

4.3. BCG-Vectored HIV Vaccine. The most practical advan-
tage of the BCG vector is its high safety. In addition to
being effective at inducing protective immunity, an HIV-1
vaccine regimen must be shown to be safe, affordable, and
compatible with other vaccines before it can be considered
promising [39]. In this respect, vectors that have already been
used in humans without serious complications and with low
cost should be utilized for HIV vaccines. BCG is a unique
live vaccine vector because of its easy antigen delivery to the
professional APC to be presented to T cells. Therefore, this
bacterium is expected to be an important vector for HIV
vaccine development.

At the early stage of rBCG research in the 1990s, Aldovini
and Young [48] demonstrated immunogenicity of rBCG
against genetically engineered HIV-1 antigens in mice. We
independently worked on an rBCG-vectored anti-HIV vac-
cine simultaneously. First, we demonstrated effective cellular
immune induction against SIV Gag antigen by the rBCG
vector in rhesus macaques [49, 50]. Furthermore, we cloned
an extracellular α antigen (antigen 85B) gene from both
BCG [51] and Mycobacterium kansasii [52], and established
a foreign antigen secretion system in mycobacteria [53].
Based on this system, we extensively evaluated several rBCG
constructs for candidate HIV vaccines and reported that
an rBCG-HIV vaccine could induce protective humoral
immune responses in guinea pigs [54]. These studies suggest
that rBCG-based vaccines are feasible as AIDS vaccines.
However, the CTL activity did not reach protective levels
with a single injection of rBCG-HIV vaccine in the macaque
model. To overcome the low immunogenicity of the rBCG
vaccine in CTL induction, we utilized various strategies for
enhancing the immune potential of the BCG vector.

4.4. Prime-Boost Regimen for Enhancing Immune Responses.
The first strategy by which we tried to improve the potential
of the rBCG-HIV vaccine was the use of a safe recombinant
viral vector for a booster vaccine. With respect to safety, tra-
ditional live vaccines, which have been administered safely to
both the healthy and the HIV-infected individuals, may be
the vectors of choice for HIV-1 vaccines. To fully take
advantage of the benefits of such traditional vaccines in the
development of anti-HIV vaccines, we studied BCG Tokyo
172 strain and the replication-deficient vaccinia vaccine
strain DIs [55, 56] both of which have been shown to
be nonpathogenic when inoculated into immune-deficient
animals as live recombinant vaccine vehicles [57]. The
vaccinia virus DIs have been tested clinically as a smallpox
vaccine in Japanese infants and proved to be quite safe. We
chose this highly attenuated virus as a booster vaccine vector
and constructed recombinant DIs (rDIs) expressing the HIV
gag [58] or SIV gag-pol gene [59]. Both rDIs constructs were
found to be effective in eliciting HIV- or SIV-Gag-specific
immunity in mice. When they were administered as a booster
antigen after priming with an SIV-DNA vaccine, the cellular
immunity to SIV Gag was greatly enhanced [59]. In brief, we
tested a new combination regimen: priming with rBCG-SIV
Gag followed by boosting with rDIs-SIV Gag.

In the macaque study, we found that BCG/DIs vaccina-
tion induced a long-lasting and effective cellular immunity
that was able to control a highly pathogenic virus SHIV C2/1
[60], after mucosal challenge [61]. A possible mechanism
of effective Gag-specific cell-mediated immunity is shown
in Figure 2. The strong Th1 response induced by the BCG
vector may contribute to eliciting the Gag-specific CTL re-
sponse. How these immune inductions are correlated with
protective efficacy requires further investigation. In this
study, the BCG/DIs vaccination developed high levels of
cellular immunity in the macaques that were protected
against the loss of CD4+ T lymphocytes with reduced viral
RNA levels after virus challenge. Furthermore, the BCG/DIs
group showed no evidence of clinical diseases or mortality
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Figure 2: A possible mechanism of effective Gag-specific cell-mediated immunity induction with the rBCG/rDIs prime-boost vaccine.
Abbreviations: DC, dendritic cell; Mφ, macrophage; PL, phagosome-lysozome; Th1, type 1 helper T cell; CTL, cytotoxic T lymphocyte.

after viral challenge during the 1-year observation period
[61]. These results suggest that the BCG/DIs prime-boost
regimen might be a potential candidate for an effective and
safe anti-HIV vaccine. Recent studies in macaques subjected
to BCG/Ad5 [62] and BCG/MVA [63] regimens strongly
support the effectiveness of the BCG vector. In the latter
study, a hemolysin-expressing BCG strain, which was devised
for more efficient antigen presentation to the CTL precursor,
elicited a robust and broad range of HIV-1 specific T-cell
responses along with recruitment of multiple T-cell clono-
types into the memory pool.

4.5. Codon Optimization Strategy. The major issue with BCG
vehicle vaccines is the low expression level of the foreign anti-
gen gene in BCG cells. In general, sufficient levels of foreign
antigen-specific immune responses are obtained with high
doses of rBCG between 10- and 100-fold greater than that
needed for a practical dose against TB in humans [54]. This is
considered the main limitation for the clinical use of rBCG-
based vaccines. To address this substantial issue, we applied
a codon optimization strategy for foreign genes in the rBCG
system to increase its expression level. The aims of the study
were to increase the immunogenicity of the foreign antigen,
decrease inoculation dosages as small as the conventional
BCG vaccine against TB, avoid adverse reactions, prevent
possible association with Th2-type immune responses, and
ward off the exacerbation of retroviral infections.

First, we determined the in vitro effects of codon opti-
mization of the HIV gene in rBCG. Although the effect of
codon optimization in mammalian cells is well documented
[64–66], its effect in rBCG vehicle had never been fully

elucidated. We targeted the HIV-1 gag p24 gene as a model
antigen to clarify the effect of codon optimization in the
rBCG system. A specially designed synthetic p24 gene
consisting of mycobacterial-preferred codons resulted in an
increase in their GC content from 43.4% to 67.4%. Further-
more, codon-optimized rBCG was generated without any
detectable changes in its characters including the growth rate.
This rBCG exhibited a dramatic increase in Gag p24 antigen
production approximately 40-fold greater than the non-
optimized rBCG. Moreover, we successfully obtained data
regarding the enhancement of immune responses in codon-
optimized rBCG-immunized mice [67]. Inoculation of mice
with a single low dose of the codon-optimized bacteria
elicited effective cellular immunity. In the ELISPOT assay,
the number of Gag-specific IFN-γ spot-forming cells elicited
by codon-optimized rBCG was significantly greater than that
elicited by non-optimized recombinants [67]. These cellular
immune responses would decrease if the CD8+ T cells were
depleted. The results also suggest that effective MHC-class I-
restricted CTL responses are inducible by vaccination with
codon-optimized rBCG. Furthermore, Gag-specific lympho-
cyte proliferative responses were also detected in the codon-
optimized rBCG-immunized mice [67].

We also applied this strategy to an SIV Gag construct
and successfully generated an rBCG harboring the codon-
optimized SIV gag gene with an expression 10-fold greater
than that of the native gag gene. In the macaque study,
compared with a native gag gene construct, a low-dose (106

bacilli) injection of this construct induced optimal priming
of Gag-specific CD4+ and CD8+ T cells and prolonged the
maintenance of memory T-cell response after vaccinia DIs
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boost [68]. These results imply that the quality of the priming
vaccine is a critical factor for inducing a desirable immune
response against immunodeficiency viruses. Thus, the codon
optimization strategy should generally be applied to other
foreign genes in rBCG-based vaccine development.

5. Vaccine for Other Infectious Diseases

There were various candidate rBCG vaccines targeting infec-
tious diseases other than TB or HIV. Stover et al. [69]
reported that the rBCG system would be useful in Lyme
disease vaccine development; the vaccine incorporated with
the surface protein of Borrelia burgdorferi first reached
clinical phase I trials. However, the vaccine was rejected due
to its low antibody production response [70]. Two groups
[71, 72] applied rBCG in malaria vaccine development
and demonstrated efficacy in a mouse model. Malaria is
recognized as one of the three major infectious diseases as
well as TB and AIDS. Although there is a long history of
malaria vaccine development, we have not seen any licensed
vaccine. The strategy to induce cellular immunity against
conserved antigens using BCG vector could be effective to
overcome substantial difficulties in producing vaccine due to
antigenic diversity and unique life cycle of this parasite. In
addition, BCG vector was tested for vaccine discovery against
some viral diseases. A rBCG expressing the measles virus
nucleoprotein demonstrated protection against measles virus
pneumonia in macaques [73]. Furthermore, we demon-
strated that a rBCG with a single hepatitis C virus (HCV)
NS5 CTL epitope into antigen 85B induced HCV-specific
CTL response in mice [74]. HCV is recognized as one of the
major infectious pathogens of which the global infection rate
is ∼3%. Although the priority for preventive HCV vaccine
development has become lower because of the remarkable
progress in the treatment, BCG vector of targeting CTL
induction may have implication for therapeutic vaccine
against this disease. All these candidates at the early stage of
rBCG study could not proceed to further development stages
at those times. The rBCG-based vaccine development for
these diseases should be reconsidered because the advanced
technology that enhances the potential of BCG vectors has
become currently available.

6. Conclusion and Future Perspective

As described in Section 3, several rBCG-based candidate
vaccines are currently being evaluated for the development
of TB vaccines. Such human trials would provide a greater
insight into the paradigm of immune correlation in M.
tuberculosis infection. In addition, the application of the
codon optimization strategy enables us to utilize this bacte-
rial vector as a primer of a heterologous prime-boost regimen
for a preventive HIV vaccine. These results could suggest that
the BCG vector is possible divalent vaccine controlling both
TB and HIV/AIDS with a single construct; such study may
help resolve the serious public health problem in the sub-
Saharan African countries in which both diseases are highly
prevalent [14].

Another potential outcome is the utility of the BCG
vector for infant vaccines. One of the largest advantages of
rBCG vaccines is their applicability to newborns. Because
BCG as a TB vaccine is integrated into the expanded program
on immunization in many countries, we have the earliest
chance to immunize newborns with BCG within 3 months
of birth before they are exposed to a variety of infectious
pathogens. Substituting the current BCG with a novel rBCG
vaccine possessing protective antigens against pathogens that
cause serious diseases in infants, such as severe diarrhea
and respiratory diseases, could be effective in developing
countries. Such vaccine concepts should be also tested in ap-
propriate animal models before they are tested in humans.
Thus, after much trial and error in the last 2 decades,
rBCG-based vaccines may contribute to the control of global
infectious diseases in the near future.
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